Другие журналы
electronic journal Machines and Plants: Design and  Exploiting

Bauman Moscow State Technical University. El № FS 77-61859. ISSN 2412-592X

Numerical Simulation of Gas Injection Impact on the Non-Machine Energy Separation Device

Machines and Plants: Design and Exploiting # 06, December 2016
DOI: 10.7463/aplts.0616.0852137
Article file: Aplts_Dec2016_038to054.pdf (1339.51Kb)
authors: K.S. Egorov1,2,*, L.V. Stepanova1, K.S. Rogozhinsky1,2



1 Bauman Moscow State Technical University, Moscow, Russia

2 Institute of Mechanics MSU n.a. M. V. Lomonosov,
Moscow, Russia

The paper considers numerical simulation of a non-machine energy separation device with a porous inner tube. The results obtained show that with a flow rate variation up to 30% of general rate the channel effi-ciency of gas-dynamic non-machine device for energy separation falls by 3-5%. Hence, a heat efficiency loss due to the colder air injection prevails over the increase of heat flow resulting from a recovery factor decrease when the temperature difference between supersonic and subsonic flows rises. So, the use of gas injection (porous inner tube) to improve the efficiency of the non-machine device for energy separation is beside the purpose.
The effect when the temperature changes its sign in the non-machine device for energy separation and supersonic flow becomes cooler while a subsonic one is heated has been also simulated. This effect was previ-ously obtained experimentally.
The numerical simulation has shown good coincidence with analytical solution in case of the laminar flow regime. The research has shown that with the laminar flow the efficiency of the non-machine device for energy separation can be significantly higher than with the turbulent flow, but its implementation is quite difficult.

References
  1. Burtsev S.A., Leontiev A.I. Study of the influence of dissipative effects on the temperature stratification in gas flows (Review). High Temperature, 2014, vol. 52, no.2, pp. 297-307. DOI: 10.1134/S0018151X13060060
  2. Leontiev A.I., Burtsev S.A., Vizel’ Ya.M., Chizhikov Yu.V. The experimental research of gasodynamic temperature stratification of natural gas. Gazovaya promyshlennost’[Gas industry], 2002, no.11, pp. 72-75 (in Russ.).
  3. Burtsev S.A. Issledovanie temperaturnogo razdeleniia v potokakh szhimaemogo gaza [The research of temperature separation in coercible gas flows. Cand. diss.]. Моscow: BMSTU, 2001. 124 p. (in Russ.).
  4. Burtsev S.A. Investigation of the operation of temperature lamination device working on the natural gas. Nauka i obrazovanie MGTU im. N.E.Baumana [Science and Education of the Bauman MSTU. Electronic journal], 2004, no.9. Available at:http://technomag.bmstu.ru/doc/516097.html, accessed 01.09.2016. DOI: 10.7463/0904.0516097 (in Russ.)
  5. Burtsev S.A. Investigation of the operation of temperature lamination device working on the water and natural gas. Nauka i obrazovanie MGTU im. N.E.Baumana [Science and Education of the Bauman MSTU. Electronic journal]. 2005, no.5. Available at:http://technomag.bmstu.ru/doc/529473.html, accessed 01.09.2016. DOI: 10.7463/0505.0529473 (in Russ.)
  6. Zditovets A.G., Titov A.A. Experimental study of a gas-dynamic method for an air stream energy separation. Teplovye protsessy v tekhnike[Thermal Processes in Engineering], 2013, no. 9, pp. 391-397 (in Russ.).
  7. Zditovets A.G., Vinogradov Yu.A., Strongin M.M. Experimental investigation of the temperature stratification of an air flow through a supersonic channel with a central body in the form of a porous permeable tube. Izvestiia RAS. Mekhanika zhidkosti i gaza[Fluid Mechanics], 2013, vol. 48, no.5, pp. 687-696. DOI: 10.1134/S0015462813050128
  8. Vinogradov Yu.A., Egorov K.S., Popovich S.S., Strongin M.M. Heat and mass transfer research on permeable surface in supersonic boundary layer. Teplovye protsessy v tekhnike[Thermal Processes in Engineering], 2010, no.1, pp. 7-9 (in Russ.).
  9. Kliukvin A.D. Analysing a numerical calculation adequacy of the recovery factor for various problem statement options. Aerokosmicheskij nauchnyj zhurnal. MGTU im. N.E. Baumana. [Aerospace Scientific Journal Bauman MSTU], 2016, no. 2, pp. 16-29. Available at:http://aerospjournal.ru/doc/837915.html, accessed 01.09.2016. DOI: 10.7463/aersp.0216.0837915 (in Russ.)
  10. Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha[Heat Transfer] 3rd ed. Moscow: Energia Publ., 1975. 488 p. (in Russ.).
  11. Kutateladze S.S., Leontiev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe[Heat and Mass Exchange and Friction in Turbulent Boundary Layer]. Moscow: Energoatomizdat Publ., 1985. 496 p. (in Russ.).
  12. Leontiev A.I., Vigdorovich I.I. Energy separation of gases with low and high Prandtl numbers. Izvestiia RAS. Mekhanika zhidkosti i gaza[Fluid Mechanics], 2013, vol. 48, no.6, pp. 811-826. DOI: 10.1134/S0015462813060124
  13. Tournier J.-M., El-Genk M. S. Properties of noble gases and binary mixtures for closed Brayton cycle applications. Energy Conversion and Management, 2008, vol. 49, iss. 3, pp. 469–492. DOI: 10.1016/j.enconman.200706.050
  14. Patankar S.V. Chislennye metody resheniia zadach teploobmena i dinamiki zhidkosti[Numerical heat transfer and fluid flow]. Moscow: Energoatomizdat Publ., 1984. 150 p. (in Russ.).
  15. Egorov K. S., Rogozhinsky K.S. Numerically simulated impact of gas Prandtl number and flow model on efficiency of the machine-less energetic separation. Nauka i obrazovanie MGTU im. N.E.Baumana [Science and Education of the Bauman MSTU. Electronic journal], 2015, no.10, pp. 21-35. Available at:http://technomag.edu.ru/doc/814490.html, accessed 01.09.2016. DOI: 10.7463/1015.0814490 (in Russ.)
  16. Burtsev S.A., Kochurov D.S., Shegolev N.L. Investigation of the helium proportion influence on the Prandtl number value of gas mixtures. Nauka i obrazovanie MGTU im. N.E.Baumana [Science and Education of the Bauman MSTU. Electronic journal], 2014, no.5, pp. 314-329. Available at:http://technomag.edu.ru/doc/710811.html, accessed 01.09.2016. DOI: 10.7463/0514.0710811 (in Russ.)
  17. Poliaev V.M., Majorov V.A., Vasil’ev L.L. Gidromekhanika i teploobmen v poristykh elementakh konstruktsij letatel’nykh apparatov[Hydrodynamics and heat exchange in porous elements of flying machine constructions]. Moscow: Mashinostroenie Publ., 1988. 168 p. (in Russ.).
  18. Belov I.A., Isaev S.A. Modelirovanie turbulentnykh techenij[Modeling of turbulent flows]. St. Petersburg.: Baltic State Tech. Univ. Publ., 2001. 108 p. (in Russ.).
  19. McEligot D.M.,Taylor M.F. The turbulent Prandtl number in the near-wall region for low-Prandl-number gas mixtures. Int. J. Heat and Mass Transfer, 1996, vol. 39, no.6, pp. 1287–1295. DOI: 10.1016/0017-9310(95)00146-8
Поделиться:
 
SEARCH
 
elibrary crossref neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2017 «Машины и установки: проектирование, разработка и эксплуатация» Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)